Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(9): 4004-4015, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34410693

RESUMO

To reduce the need for elevated electrical potential to deactivate catechol-based smart adhesive and preserve its reversibility, conductive 1-pyrenemethyl methacrylate (PyMA) was incorporated into a catechol and phenylboronic acid-containing adhesive coating immobilized on aluminum (Al) discs. Electrochemical impedance spectroscopy (EIS) indicated that incorporation of 26 mol % of PyMA reduced ionic resistance (Rs) and charge-transfer resistance (Rc) of the coating from over 22 Ω/mm2 to 5.9 and 1.2 Ω/mm2, respectively. A custom-built Johnson-Kendall-Roberts (JKR) contact mechanics test setup was used to evaluate the adhesive property of the coating with in situ applied electricity using a titanium (Ti) sphere both as a test substrate as well as the cathode for application of electricity and the Al disc as the anode. The adhesive coating demonstrated over 95% reduction in the adhesive property when electricity (1-2 V) was applied while the adhesive was in direct contact with the Ti surface. The addition of PyMA enables the deactivation of the adhesive using a voltage as low as 1 V. Both cyclic voltammetry (CV) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra confirmed the formation of catechol-boronate complexation through electrochemical stimulation. Breaking the complex with an acidic buffer (pH 3) recovered the catechol for strong wet adhesion and the coating could be repeatedly deactivated and reactivated using low electrical potential for up to five cycles. Incorporation of both conductive PyMA and boronic acid as the temporary protecting group was required to achieve rapidly switchable adhesive that could be deactivated with low applied voltage.


Assuntos
Adesivos , Catecóis , Eletrodos , Titânio
2.
Front Chem ; 7: 631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608272

RESUMO

A simple two-step, shaking-assisted polydopamine (PDA) coating technique was used to impart polypropylene (PP) mesh with antimicrobial properties. In this modified method, a relatively large concentration of dopamine (20 mg ml-1) was first used to create a stable PDA primer layer, while the second step utilized a significantly lower concentration of dopamine (2 mg ml-1) to promote the formation and deposition of large aggregates of PDA nanoparticles. Gentle shaking (70 rpm) was employed to increase the deposition of PDA nanoparticle aggregates and the formation of a thicker PDA coating with nano-scaled surface roughness (RMS = 110 nm and Ra = 82 nm). Cyclic voltammetry experiment confirmed that the PDA coating remained redox active, despite extensive oxidative cross-linking. When the PDA-coated mesh was hydrated in phosphate saline buffer (pH 7.4), it was activated to generate 200 µM hydrogen peroxide (H2O2) for over 48 h. The sustained release of low doses of H2O2 was antibacterial against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. PDA coating achieved 100% reduction (LRV ~3.15) when incubated against E. coli and 98.9% reduction (LRV ~1.97) against S. epi in 24 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...